Synthesis and electrochemical properties of spherical and hollow-structured NiO aggregates created by combining the Kirkendall effect and Ostwald ripening.

نویسندگان

  • Jung Sang Cho
  • Jong Min Won
  • Jong-Heun Lee
  • Yun Chan Kang
چکیده

The Kirkendall effect and Ostwald ripening were successfully combined to prepare uniquely structured NiO aggregates. In particular, a NiO-C composite powder was first prepared using a one-pot spray pyrolysis, which was followed by a two-step post-treatment process. This resulted in the formation of micron-sized spherical and hollow-structured NiO aggregates through a synergetic effect that occurred between nanoscale Kirkendall diffusion and Ostwald ripening. The discharge capacity of the spherical and hollow-structured NiO aggregates at the 500(th) cycle was 1118 mA h g(-1) and their capacity retention, which was measured from the second cycle, was nearly 100%. However, the discharge capacities of the solid NiO aggregates and hollow NiO shells were 631 and 150 mA h g(-1), respectively, at the 500(th) cycle and their capacity retentions, which were measured from the second cycle, were 63 and 14%, respectively. As such, the spherical and hollow-structured NiO aggregates, which were formed through the synergetic effect of nanoscale Kirkendall diffusion and Ostwald ripening, have high structural stability during cycling and have excellent lithium storage properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Hollow Fe2O3 Nanorods and Nanospheres by Nanoscale Kirkendall Diffusion, and Their Electrochemical Properties for Use in Lithium-Ion Batteries

A novel process for the preparation of aggregate-free metal oxide nanopowders with spherical (0D) and non-spherical (1D) hollow nanostructures was introduced. Carbon nanofibers embedded with iron selenide (FeSe) nanopowders with various nanostructures are prepared via the selenization of electrospun nanofibers. Ostwald ripening occurs during the selenization process, resulting in the formation ...

متن کامل

Design and synthesis of micron-sized spherical aggregates composed of hollow Fe2O3 nanospheres for use in lithium-ion batteries.

A novel structure denoted a "hollow nanosphere aggregate" is synthesized by introducing nanoscale Kirkendall diffusion to the spray pyrolysis process. The hollow Fe2O3 nanosphere aggregates with spherical shape and micron size are synthesized as the first target material. A solid iron oxide-carbon composite powder that is prepared by a one-pot spray pyrolysis process is transformed into the hol...

متن کامل

Li(1.2)Mn(0.6)Ni(0.1)Co(0.1)O2 microspheres constructed by hierarchically arranged nanoparticles as lithium battery cathode with enhanced electrochemical performance.

Novel lithium-rich layered Li(1.2)Mn(0.6)Ni(0.1)Co(0.1)O2 microspheres containing hierarchically arranged and interconnected nanostructures have been synthesized by a combination of template-free co-precipitation and solid-state methods. The in situ formed γ-MnO2 spherical template upon co-precipitation gets sacrificed during the course of solid-state fusion of cobalt, nickel and lithium precur...

متن کامل

The synthesis and mechanism exploration of europium-doped LiYF4 micro-octahedron phosphors with multilevel interiors.

Multi-layered hollow LiYF4:Eu(3+) micro-octahedrons, with about 400 nm of single-layer thickness and 300 nm of interlayer space, have been synthesized via a facile hydrothermal route in the presence of surfactant ethylenediamine tetraacetic acid (EDTA). The mechanisms of the morphology evolution of the LiYF4:Eu micro-octahedrons are investigated in detail. Time-dependent experiments indicate th...

متن کامل

Cobalt ferrite nanorings: Ostwald ripening dictated synthesis and magnetic properties.

CoFe(2)O(4) nanorings were synthesized by a simple solvothermal process, in which Ostwald ripening was definitely responsible for the formation of hollow structures, and their ferromagnetic behavior at room temperature was observed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 46  شماره 

صفحات  -

تاریخ انتشار 2015